ON DELETING DETERMINISTIC RESTARTING AUTOMATA THAT HAVE TWO WINDOWS

František Mráz ${ }^{(A, B)} \quad$ Friedrich Otto $^{(C, D)}$
${ }^{(A)}$ Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25 11800 Praha 1, Czech Republic
frantisek.mraz@mff.cuni.cz
${ }^{(C)}$ Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany
f.otto@uni-kassel.de

Abstract

We study deterministic restarting automata with two windows, abbreviated as det-2-RR-automata. In each cycle of a computation, a det-2-RR-automaton can perform up to two delete operations, one with each of its two windows. We study the class of languages accepted by these automata, comparing it to other well-known language classes and exploring closure properties and algorithmic properties.

Keywords: restarting automaton, language class, closure property, decision problem

1. Introduction

The restarting automaton, which was introduced in [9, and many of its variants defined later (see, e.g., [17]) are motivated by techniques and problems from linguistics. The original model of the restarting automaton was presented in order to model the so-called 'analysis by reduction,' which is a technique used in linguistics to analyze sentences of natural languages that have free word order. This technique consists in a stepwise simplification of an extended sentence such that the (in)correctness of the sentence is not affected (see, e. g., [9, 11, 21]). Accordingly, a restarting automaton M consists of a flexible tape with end-of-tape markers, a read/write window of a fixed size $k \geq 1$, and a finite-state control. It works in cycles, where each cycle begins with the window at the left end of the tape and M being in its initial state. During a cycle M scans the current tape contents from left to right and executes

[^0]
[^0]: Some of the results of this paper have been announced at DLT 2017 in Liège, Belgium, August 2017. An extended abstract appeared in the proceedings of that conference [15].
 ${ }^{(B)}$ Partially supported by the Czech Science Foundation under the project 15-04960S.
 ${ }^{(D)}$ This paper was completed while F. Otto was visiting at the Faculty of Mathematics and Physics of Charles University at Prague.

