INJECTIVITY OF THE QUOTIENT $h \backslash g$ OF TWO MORPHISMS AND AMBIGUITY OF LINEAR GRAMMARS

Paavo Turakainen
Department of Mathematical Sciences, University of Oulu P. O. Box 3000, FIN-90014 Oulu, Finland
e-mail: paavo.turakainen@oulu.fi

Abstract

From a linear context-free grammar simulating an arbitrary instance $\left(\varphi_{1}, \varphi_{2}\right)$ of the Post correspondence problem PCP we easily construct two nonerasing morphisms h and g with h length-duplicating such that the instance (h, g) of PCP has no solution but (φ_{1}, φ_{2}) possesses a solution if and only if the quotient operation $h \backslash g$ is not injective on its domain. Hence, the undecidability of the injectivity problem follows.

Keywords: undecidability, morphism, injectivity, linear context-free grammars, Post correspondence problem.

1. Introduction

If a word u is a prefix of another word w, i. e., if $w=u v$ for some v, then the overflow $u^{-1} w$ is defined by $u^{-1} w=v$. Otherwise, the operation is undefined. For any morphisms $h, g: X^{*} \rightarrow Y^{*}$, we may define, for instance, the following operations

- pairing: $\langle h, g\rangle(x)=(h(x), g(x))$,
- duplication: $(h \circ g)(x)=h(x) g(x)$,
- quotient: $(h \backslash g)(x)=h(x)^{-1} g(x)$.

It is well-known that the injectivity of morphisms on regular languages is decidable. However it is undecidable whether an arbitrary pairing is injective on its domain (see [3] or [2]) and whether a duplication is injective on every set of all words of equal length. The latter assertion follows from [7, Theorem 4.1].

The quotient operation is used in [1] where it is shown that every recursively enumerable language $L \subseteq \Sigma^{*}$ can be presented in the form $L=(h \backslash g)\left(\Delta^{+}\right) \cap \Sigma^{*}$. A short proof of this result in [6] (or see [2]) also reproves that PCP and its modified version are undecidable. All languages of the form $(h \backslash g)\left(\Delta^{+}\right)$are not recursive, but their emptiness problem is trivially decidable.

We shall show that the injectivity of quotients $h \backslash g$ is undecidable. This also gives another solution to the Erasing Writing PCP introduced in [8]. The solution given in [4] is based on a long construction of Ruohonen [5].

