WADGE DEGREES OF CLASSES OF ω-REGULAR k-PARTITIONS

Victor Selivanov ©
Department of Mathematics and Computer Science, St. Petersburg State University 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia and A. P. Ershov Institute of Informatics Systems
Siberian Branch, Russian Academy of Sciences Lavrentyev ave. 6, 630090 Novosibirsk, Russia
vseliv@iis.nsk.su

Abstract

We develop a theory of k-partitions of the set of infinite words recognizable by classes of finite automata. The theory enables to complete proofs of existing results about topological classifications of the (aperiodic) ω-regular k-partitions, and provides tools for dealing with other similar questions. In particular, we characterise the structure of Wadge degrees of (aperiodic) ω-regular k-partitions, prove the decidability of many related problems, and discuss their complexity.

Keywords: Wadge reducibility, regular k-partition, acceptor, transducer, determinacy, iterated labeled tree, fine hierarchy

1. Introduction

Working in descriptive set theory, W. Wadge 41] has shown that the degree structure of Borel sets of ω-words over any finite non-unary alphabet under the many-one reducibility by continuous functions is semi-well-ordered (i.e., it is well founded and has no 3 pairwise incomparable elements). Working in automata theory independently of W. Wadge, K. Wagner 42 has shown that the structure of regular ω languages under the continuous reducibility is semi-well-ordered with the corresponding ordinal $\omega^{\omega}=\sup \left\{\omega, \omega^{2}, \omega^{3}, \ldots\right\}$. Working in computability theory independently of W. Wadge and K. Wagner, the author [22] discovered a semi-well-ordered structure of "natural" m-degrees with the corresponding ordinal $\varepsilon_{0}=\sup \left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\right\}$. In [23] (see also [24, 28]), we characterised the initial segments of the structure in [22]

[^0]
[^0]: This paper completes the conference papers 31 34 by providing full details for technically involved proofs that were only sketched, and by developing a general approach to other similar problems.

 Supported by the Russian Science Foundation, project 18-11-00100. (D) 0000-0003-4316-0859

