STATE COMPLEXITY OF GF(2)-INVERSE AND GF(2)-STAR ON BINARY LANGUAGES

Alexander Okhotin © ${ }^{(A)} \quad$ Elizaveta Sazhneva ${ }^{(A, B)}$
${ }^{(A)}$ Department of Mathematics and Computer Science, St. Petersburg State University 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
alexander.okhotin@spbu.ru sazhneva.eliza@yandex.ru
${ }^{(B)}$ Department of Mechanics and Mathematics, Moscow State University 1 Leninskie gory, Moscow 119991, Russia

ABSTRACT

The GF(2)-inverse operation on formal languages, defined for every language containing the empty string, is known to preserve regularity; its state complexity is $2^{n}+1$ for alphabets with at least three symbols, and $2^{n-1}+1$ for a one-symbol alphabet. In this paper, it is proved that, for a two-symbol alphabet, its state complexity is exactly $\frac{3}{4} 2^{n}+3$. For a more general operation, the GF(2)-star, which is applicable to every language, it is proved that its state complexity for a binary alphabet remains $2^{n}+1$.

Keywords: GF(2)-concatenation, GF(2)-inverse, state complexity, primitive polynomials

1. Introduction

GF (2)-operations on formal languages were recently defined by Bakinova et al. [1]. These operations are variants of the classical concatenation and Kleene star, in which the disjunction in the definition is replaced with exclusive OR. Consider that the classical concatenation of languages K and L is the set of all such strings w, that there exists at least one partition $w=u v$ with $u \in K$ and $v \in L$; this is a disjunction of $|w|+1$ conjunctions. Replacing this disjunction with exclusive OR leads to the following new operation called GF(2)-concatenation:

$$
K \odot L=\{w \mid \text { the number of partitions } w=u v, \text { with } u \in K \text { and } v \in L, \text { is odd }\}
$$

Similarly, the Kleene star L^{*} is defined as the set of all strings, for which there is at least one partition into a concatenation of substrings from L; a similar modification leads to another new operation, the $G F(2)$-star:

$$
\begin{aligned}
& L^{\circledast}=\left\{w \mid \text { the number of partitions } w=u_{1} \ldots u_{k},\right. \\
& \left.\qquad \text { with } k \geqslant 0 \text { and } u_{1}, \ldots, u_{k} \in L \backslash\{\varepsilon\}, \text { is odd }\right\}
\end{aligned}
$$

