Journal of Automata, Languages and Combinatorics **27** (2022) 4, 323-333 (c) Institut für Informatik · Justus-Liebig-Universität Giessen

r-STIRLING NUMBERS OF THE SECOND KIND THROUGH CONTEXT-FREE GRAMMARS

JUAN TRIANA

Vicerrectoría de investigación, Universidad ECCI Cra. 19# 49-20, Bogotá, Colombia jgabriel.triana@gmail.com

ABSTRACT

A context-free grammar G over an alphabet Σ is defined as a set of substitution rules that replace a letter in Σ by a formal function over Σ . In this paper, we introduce a connection between the context-free grammar $G = \{a \rightarrow ab ; b \rightarrow b\}$ and r-Stirling numbers of the second kind. Some combinatorial identities involving r-Stirling numbers of the second kind and binomial coefficients will be obtained by grammatical methods.

 $K\!eywords:\ r\text{-Stirling}$ numbers of the second kind, formal derivative operator, context-free grammars

1. Introduction

Let Σ be an alphabet, whose letters are regarded as independent commutative indeterminates. Following [3], a formal function over Σ is defined recursively as follows:

- (I) Every letter in Σ is a formal function.
- (II) If u, v are formal functions, then u + v and uv are formal functions.
- (III) If f(x) is an analytic function, and u is a formal function, then f(u) is a formal function.
- (IV) Every formal function is constructed as above in a finite number of steps.

A context-free grammar G over Σ is defined as a set of substitution rules, called productions, replacing a letter in Σ by a formal function over Σ . For each $a \in \Sigma$, a grammar G contains at most one production of the form $a \to w$. There is here no distinction between terminals and non-terminals, as it is usual in the theory of formal languages.

Definition 1. Given a context-free grammar G over Σ , the formal derivative operator D, with respect to G, is defined in the following way:

(I) For u, v formal functions,

D(u+v) = D(u) + D(v) and D(uv) = D(u)v + uD(v).