
Journal of Automata, Languages and Combinatorics 25 (2020) 4, 349 – 355
c© Institut für Informatik · Justus-Liebig-Universität Giessen

DERIVATIVES OF REGULAR
EXPRESSIONS WITH CUTS

Niklas Zechner

Språkbanken, Department of Swedish, University of Gothenburg
Box 100, 405 30 Gothenburg, Sweden

niklas.zechner@gu.se

ABSTRACT
Derivatives of regular expressions are an operation which for a given expression pro-
duces an expression for what remains after a specific symbol has been read. This can
be used as a step in the process of transforming an expression into a finite string au-
tomaton. Cuts are an extension of the ordinary regular expressions; the cut operator
is essentially a concatenation without backtracking, formalising a behaviour found in
many programming languages. Just as for concatenation, we can also define an iterated
cut operator. We show and derive expressions for the derivatives of regular expressions
with cuts and iterated cuts.

Keywords: derivative, regular expression, automaton

1. Introduction

Derivatives of regular expressions were introduced in 1964 by Janusz A. Brzozowski [2].
The idea is to compute a resulting regular expression after a given symbol has been
read by a given expression. This fundamental operation can help avoid repeating
costly computations, and can be used to construct a finite automaton.

The cut operator is an additional operator that can be used in regular expressions.
It can be seen as a variant of concatenation, with the difference being that the left
operand always matches the maximum number of symbols. With the ordinary con-
catenation operator E · F , typical implementations try to match as much as possible
of the given string to E, and then backtrack if that does not work. For example,
consider the expression a∗ ·b∗ ·a ·b, and the string “aab”. A traditional algorithm will
typically start by matching “aa” to the a∗ part of the expression, but when that does
not give an accepting result, it backtracks to matching only the first “a” to the a∗

part, nothing to the b∗ part, and lastly “ab” to a · b. The cut operator is similar,
but without backtracking. We write the cut of expressions E and F as E ! F . If we
replace one concatenation in the above example, and get a∗ · b∗ ! a · b, this no longer
matches the string “aab”; “aa” is matched to a∗, “b” is matched to b∗, and then when
there is nothing to match with a · b, no backtracking is done, so there is no match.


