Journal of Automata, Languages and Combinatorics **24** (2019) 2–4, 367–373 © Institut für Informatik \cdot Justus-Liebig-Universität Giessen

AN IMPROVEMENT TO A RECENT UPPER BOUND FOR SYNCHRONIZING WORDS OF FINITE AUTOMATA

YAROSLAV SHITOV

Kvartira 4, Izumrudnaya ulitsa 65 129346 Moscow, Russia yaroslav-shitov@yandex.ru

ABSTRACT

It has been known since the 60's that every synchronizing complete discrete *n*-state automaton admits a reset word of length at most $\alpha n^3 + o(n^3)$ for some absolute constant α . J.-E. Pin and P. Frankl proved this statement with $\alpha = 1/6 = 0.1666...$ in 1982, and this bound remained best known until 2017, when M. Szykuła decreased its value to $\alpha \approx 0.1664$. In this note, we present a modification to the latest approach which leads to a more substantial improvement of $\alpha \leq 0.1654$.

Keywords: automata theory, Černý conjecture

1. Introduction

Let $\mathcal{A} = (Q, \Sigma, \delta)$ be a deterministic finite automaton, where Q is a finite set of states, Σ is a finite alphabet, and $\delta : Q \times \Sigma \to Q$ is a transition function, which assigns a mapping $Q \to Q$ to every letter of Σ . This function naturally extends to an action $Q \times \Sigma^* \to Q$ of the free monoid Σ^* on Q, and this action is still denoted by δ . For a subset $S \subseteq Q$ and a word $w \in \Sigma^*$, we define $S \cdot w$ as the set of all images $s \cdot w$ of elements $s \in S$ under the action of w. The cardinality of $Q \cdot w$ is called the rank of a word w; this quantity is denoted by $rk_{\mathcal{A}} w$ or simply rk w if the choice of \mathcal{A} is clear from the context. The rank of an automaton is defined as the smallest possible rank of a word. An automaton \mathcal{A} of rank one is called synchronizing, and the length of the shortest rank-one words is called the reset threshold of \mathcal{A} and denoted by $rt(\mathcal{A})$.

Upper bounds on reset thresholds of synchronizing automata were a topic of extensive research in the last 50 years, and one of the main goals of this study is a famous conjecture stating that $\operatorname{rt}(\mathcal{A}) \leq (n-1)^2$ for any synchronizing *n*-state automaton \mathcal{A} ; this statement was considered many years ago by different authors and became known as the *Černý conjecture* (see a historical survey in [11]). There is a lot of progress on this question for different special classes of automata [5, 7, 9], but the general version of the Černý conjecture remains wide open. The cubic upper bounds on the reset threshold, that is, inequalities of the form $\operatorname{rt}(\mathcal{A}) \leq \alpha n^3 + o(n^3)$ for some fixed α , have been known since 1966, see [6]. After a series of improvements [1, 2, 4, 5], the