COUNTING SYMBOL SWITCHES IN SYNCHRONIZING AUTOMATA

Henk Don ${ }^{(A)} \quad$ Hans Zantema ${ }^{(B, A)}$
${ }^{(A)}$ Radboud University Nijmegen
P. O. Box 9010, 6500 GL Nijmegen, The Netherlands
h.don@math.ru.nl
${ }^{(B)}$ Department of Computer Science, TU Eindhoven P. O. Box 513, 5600 MB Eindhoven, The Netherlands h.zantema@tue.nl

Abstract

Instead of looking at the lengths of synchronizing words as in Černý's conjecture, we look at the switch count of such words, that is, we only count the switches from one letter to another. Where the synchronizing words of the Cerný automata \mathcal{C}_{n} have switch count linear in n, we wonder whether synchronizing automata exist for which every synchronizing word has quadratic switch count. The answer is positive: we prove that switch count has the same complexity as synchronizing word length. We give some series of synchronizing automata yielding quadratic switch count, the best one reaching $\frac{2}{3} n^{2}+O(n)$ as switch count.

We investigate all binary automata on at most 9 states and determine the maximal possible switch count. For all $3 \leq n \leq 9$, a strictly higher switch count can be reached by allowing more symbols. This behaviour differs from length, where for every n, no automata are known with higher synchronization length than \mathcal{C}_{n}, which has only two symbols. It is not clear if this pattern extends to larger n. For $n \geq 12$, our best construction only has two symbols.

Keywords: Černý conjecture, synchronization, switch count

1. Introduction

The well-known Černý automaton \mathcal{C}_{n} on n states has the shortest synchronizing word $b\left(a^{n-1} b\right)^{n-2}$ of length $(n-1)^{2}$; for $n=4$ this is baaabaaab and the automaton is drawn below.

