Journal of Automata, Languages and Combinatorics **24** (2019) 2–4, 153–164 (© Institut für Informatik · Justus-Liebig-Universität Giessen

A NEW LOWER BOUND FOR RESET THRESHOLD OF BINARY SYNCHRONIZING AUTOMATA WITH SINK

DMITRY ANANICHEV^(A) VOJTĚCH VOREL^(B)

(A) Institute of Natural Sciences and Mathematics, Ural Federal University Pr. Lenina 51, 620000 Ekaterinburg, Russia D.S.Ananichev@urfu.ru

(B) Faculty of Mathematics and Physics, Charles University Malostranské náměsti 25, 11636 Prague, Czech Republic vorel@ktiml.mff.cuni.cz

ABSTRACT

We present a new series of examples of binary slowly synchronizing automata with a sink state. The reset threshold of the *n*-state automaton in this series is $\frac{n^2}{4} + 2n - 9$. This improves on the previously known lower bound for the maximum reset threshold of binary synchronizing *n*-state automata with a sink state.

Keywords: synchronizing 0-automaton, reset threshold

1. Background and Motivation

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a complete deterministic finite automaton (DFA, for short) with the state set Q, the input alphabet Σ , and the transition function $\delta \colon Q \times \Sigma \to Q$. If $|\Sigma| = 2$, then we refer to this automaton as a *binary* DFA. The action of the letters in Σ on the states in Q defined via δ extends in a natural way to an action of the words in the free Σ -generated monoid Σ^* ; the latter action is still denoted by δ . For any $w \in \Sigma^*$ and $X \subseteq Q$, we set

$$\delta(X, w) = \{ \delta(q, w) \mid q \in X \}.$$

Sometimes we write X.w for $\delta(X, w)$.

A DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ is said to be *synchronizing* if there is a word $w \in \Sigma^*$ such that $|\delta(Q, w)| = 1$. The word w is then called a *synchronizing* or *reset* word for \mathscr{A} . The minimum length of reset words for a synchronizing automaton \mathscr{A} is called the *reset threshold* of \mathscr{A} and is denoted by $\operatorname{rt}(\mathscr{A})$. The reset threshold of a class of

 $^{^{(}A)}$ Supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 1.3253.2017, and the Competitiveness Enhancement Program of Ural Federal University.

^(B)Supported by the Czech Science Foundation grant GA14-10799S and GAUK grant no. 52215.