COUNTING OCCURRENCES OF A PATTERN OF LENGTH THREE WITH AT MOST TWO DISTINCT LETTERS IN A k-ARY WORD

Toufik $Mansour^{(A)}$ Armend Sh. Shabani^(B)

(A) University of Haifa, Department of Mathematics 3498838 Haifa, Israel tmansour@univ.haifa.ac.il

(B) University of Prishtina, Department of Mathematics 10000 Prishtinë, Republic of Kosova armend.shabani@uni-pr.edu

ABSTRACT

Define $\tau(\pi)$ to be the number of subsequences of π that are order-isomorphic to τ . Let τ be a pattern of length three with at most two distinct letters, namely,

$$\tau \in \{111,112,121,122,211,212,221\}.$$

In this paper, we give an algorithm for finding the generating function

$$w_{\tau;r}(n;y) = \sum_{k \ge 1} \sum_{\pi \in [k]^n, \tau(\pi) = r} y^k$$

for the number of k-ary words of length n that contain exactly r occurrences of the pattern τ , for given $r \geq 0$. In particular, we obtain explicit formulas for the generating functions $w_{\tau;r}(n;y)$, where r=0,1.

Keywords: k-ary word, pattern, enumeration, generating function, Eulerian polynomial

1. Introduction

Permutations. We denote the set of permutations of $[n] = \{1, 2, ..., n\}$ by S_n . We shall view permutations in S_n as words with n distinct letters in [n]. A permutation pattern or just pattern is a permutation $\tau \in S_\ell$, and an occurrence of τ in a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n \in S_n$ is a subsequence of π that is order-isomorphic to τ . For instance, an occurrence of 312 is a subsequence $\pi_a \pi_b \pi_c$ $(1 \le a < b < c \le n)$ of π such that $\pi_b < \pi_c < \pi_a$. We denote the number of permutations in S_n that contain exactly r occurrences of the pattern τ by $s_{\tau;r}(n)$. In the last two decades much attention has been paid to the problem of finding the numbers $s_{\tau;r}(n)$ for a fixed $r \ge 0$ and a given pattern τ (see [1,2,8,10-12] and references therein). Up to now, only the