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ABSTRACT
Define 7(7) to be the number of subsequences of 7 that are order-isomorphic to 7.
Let 7 be a pattern of length three with at most two distinct letters, namely,

7€ {111,112,121,122,211, 212, 221}.

In this paper, we give an algorithm for finding the generating function

wrir (s y) = Z Z v

k>1 welk]™,r(m)=r

for the number of k-ary words of length n that contain exactly r occurrences of the
pattern 7, for given r > 0. In particular, we obtain explicit formulas for the generating
functions wr;r(n;y), where r = 0, 1.
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1. Introduction

Permutations. We denote the set of permutations of [n] = {1,2,...,n} by S,. We
shall view permutations in S,, as words with n distinct letters in [n]. A permutation
pattern or just pattern is a permutation 7 € Sy, and an occurrence of T in a permu-
tation m = mymy -, € S, is a subsequence of 7 that is order-isomorphic to 7. For
instance, an occurrence of 312 is a subsequence m,mm. (1 < a <b<c<n)ofrw
such that m, < 7. < m,. We denote the number of permutations in S,, that contain
exactly r occurrences of the pattern 7 by s;,-(n). In the last two decades much at-
tention has been paid to the problem of finding the numbers s;..(n) for a fixed r > 0
and a given pattern 7 (see [1,[2L[8l{L0H12] and references therein). Up to now, only the



