
Journal of Automata, Languages and Combinatorics 17 (2012) 2–4, 185–204
c© Otto-von-Guericke-Universität Magdeburg

COMPUTING WITH CAPSULES

Jean-Baptiste Jeannin

Department of Computer Science, Cornell University
Ithaca, New York 14853-7501, USA
e-mail: jeannin@cs.cornell.edu

and

Dexter Kozen

Department of Computer Science, Cornell University
Ithaca, New York 14853-7501, USA
e-mail: kozen@cs.cornell.edu

ABSTRACT

Capsules provide an algebraic representation of the state of a computation in higher-
order functional and imperative languages. A capsule is essentially a finite coalgebraic
representation of a regular closed λ-coterm. One can give an operational semantics
based on capsules for a higher-order programming language with functional and imper-
ative features, including mutable bindings. Static (lexical) scoping is captured purely
algebraically without stacks, heaps, or closures. All operations of interest are typable
with simple types, yet the language is Turing complete. Recursive functions are repre-
sented directly as capsules without the need for fixpoint combinators.

Keywords: capsules, semantics, functional programming, imperative programming

1. Introduction

Capsules provide an algebraic representation of the state of a computation in higher-
order functional and imperative programming languages. They conservatively extend
the classical λ-calculus with mutable variables and assignment, enabling the con-
struction of certain regular coterms (infinite terms) representing recursive functions
without the need for fixpoint combinators. They have a well-defined statically-scoped
evaluation semantics, are typable with simple types, and are Turing complete.

Representations of state have been studied in the past by many authors. Ap-
proaches include syntactic theories of control and state [11, 12], the semantics of local
storage [14], functional languages with effects [22, 23, 24], monads [28], closure struc-
tures [3, 4, 5] and denotational semantics [27, 35, 36]. Capsules provide a purely
algebraic alternative in that no combinatorial structures are needed. Perhaps the
most important aspect of capsules is that static scoping and local variables are cap-
tured without the need for closures. Cumbersome combinatorial machinery such as


