Journal of Automata, Languages and Combinatorics 14 (2009) 1, 63-73
© Otto-von-Guericke-Universitat Magdeburg

SOFTWARE REJUVENATION IN EMBEDDED SYSTEMS !

CHANDRA M. KINTALA
Yahoo! Labs

Bangalore, India
e-mail: kintala@yahoo-inc.com

ABSTRACT

Mobile communication devices have multitasking embedded software running in their
operating systems (OS) as well as applications. Both the OS modules and the appli-
cation components are assigned predetermined memory in those devices due to near-
realtime performance requirements and lack of virtual memory. Memory (stack and
heap) overflow problems occur in such software components because of programmer’s
inability to accurately estimate the size of the needed memory and also because of
Mandelbugs due to their complexity. A new software rejuvenation variation called Op-
portunistic Micro Rejuvenation (OMR) is proposed where a task that “misbehaves” is
identified and rejuvenated at an opportune instant. Following the traditional model
for software rejuvenation, a Stochastic Area Network model is used to simulate and
study the availability of such embedded systems with OMR. It is shown that OMR
alone will increase the availability only slightly but when combined with other memory
management techniques, such as shared supplementary memory, OMR will increase the
availability significantly.

Keywords: Stack overflow, heap overflow, embedded systems, software rejuvenation,
resource constrained fault-tolerance

1. Introduction

Mobile communication devices and other similar systems are becoming increasingly
ubiquitous giving rise to large number of applications and services embedded in them.
Such applications have near-real-time performance needs and place high demands on
the networking and multi-tasking capabilities. Fast market growth of those devices,
short time-to-market pressures and high performance needs have led to increased soft-
ware complexity. Most embedded systems, as much as 95 % according to Middha et
al. [9], do not use virtual memory and hence programmers are expected to estimate
their run-time memory (stack and heap) needs for their operating systems as well
as applications. Estimating run-time memory requirements accurately is significantly
hard [1] due to increased complexity of the OS and application software in embedded

1This paper is based on research done with colleagues when the author was at Motorola Labs in
Bangalore. That research was first reported in a conference paper [13] containing some other results
as well. This is an expanded version of the relevant portions of that conference paper.



