GENERATING ALL CIRCULAR SHIFTS BY CONTEXT-FREE GRAMMARS IN CHOMSKY NORMAL FORM

Peter R. J. Asveld
Department of Computer Science, Twente University of Technology P. O. Box 217, 7500 AE Enschede, the Netherlands
e-mail: infprja@cs.utwente.nl

Abstract

Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an alphabet of n symbols and let C_{n} be the language of circular or cyclic shifts of the word $a_{1} a_{2} \ldots a_{n}$; so $C_{n}=\left\{a_{1} a_{2} \ldots a_{n-1} a_{n}, a_{2} a_{3} \ldots a_{n} a_{1}, \ldots\right.$, $\left.a_{n} a_{1} \ldots a_{n-2} a_{n-1}\right\}$. We discuss a few families of context-free grammars $G_{n}(n \geq 1)$ in Chomsky normal form such that G_{n} generates C_{n}. The grammars in these families are investigated with respect to their descriptional complexity, i.e., we determine the number of nonterminal symbols $\nu(n)$ and the number of rules $\pi(n)$ of G_{n} as functions of n. These ν and π happen to be functions bounded by low-degree polynomials, particularly when we focus our attention to unambiguous grammars. Finally, we introduce a family of minimal unambiguous grammars for which ν and π are linear.

Keywords: Context-free grammar, Chomsky normal form, permutation, circular shift, cyclic shift, descriptional complexity, unambiguous grammar

1. Introduction

In [2] we considered context-free grammars $G_{n}(n \geq 1)$ in Chomsky normal form that generate the finite language L_{n} consisting of all permutations over the alphabet $\Sigma_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. A few families $\left\{G_{n}\right\}_{n \geq 1}$ of such grammars for $\left\{L_{n}\right\}_{n \geq 1}$ have been studied in [2] with respect to their grammatical complexity; more precisely, the number of nonterminal symbols $\nu(n)$ and the number of production rules $\pi(n)$ of G_{n} have been determined as functions of n.

In this paper we restrict ourselves to a subset of specific permutations over Σ_{n}, viz. to the so-called circular or cyclic shifts. Assuming a linear order on Σ_{n}, e.g., $a_{1}<a_{2}<\cdots<a_{n}$, the set C_{n} of circular shifts (also called cyclic shifts) over Σ_{n} is

$$
C_{n}=\left\{a_{1} a_{2} \ldots a_{n-1} a_{n}, a_{2} a_{3} \ldots a_{n} a_{1}, a_{3} a_{4} \ldots a_{1} a_{2}, \ldots, a_{n} a_{1} \ldots a_{n-2} a_{n-1}\right\}
$$

So C_{n} is obtained from the word $a_{1} a_{2} \ldots a_{n}$ by repetitively moving the first symbol to the right-hand end of the string. Clearly, C_{n} contains n strings, which is much less than the n ! elements of $L_{n}[7,12]$. Considered as a set of permutations of $a_{1} a_{2} \ldots a_{n}$ the set C_{n} forms a cyclic subgroup of order n of the symmetric group \mathfrak{S}_{n} over Σ_{n}

