Journal of Automata, Languages and Combinatorics **10** (2005) 5/6, 641–653 © Otto-von-Guericke-Universität Magdeburg

THE COMPLEXITY OF THE MINIMUM *k*-COVER PROBLEM¹

RICHARD COLE²

Computer Science Department, New York University New York, NY 10012-1185, USA e-mail: cole@cs.nyu.edu

COSTAS S. ILIOPOULOS³, MANAL MOHAMED

Algorithm Design Group, Department of Computer Science King's College London, London WC2R 2LS, England e-mail: {csi,manal}@dcs.kcl.ac.uk

W. F. $SMYTH^4$

Algorithms Research Group, Department of Computing & Software McMaster University, Hamilton ON L8S 4K1, Canada

Department of Computing, Curtin University, Perth WA 6845, Australia e-mail: bill@arg.cas.mcmaster.ca

and

LU YANG

IBM Canada Limited 8200 Warden Avenue, Markham ON L6G 1C7, Canada e-mail: luyang@ca.ibm.com

ABSTRACT

We consider the problem of determining the minimum cardinality collection of substrings, each of given length $k \ge 2$, that "cover" a given string x of length n. We show first, by reduction from 3-SAT, that this minimum k-cover problem is NP-complete. Then we propose further two greedy algorithms that are believed to have a logarithmic approximation factor.

Keywords: Cover, minimum k-cover, NP-complete, vertex cover

²Work supported in part by NSF grants CCR-0105678 and CCF-0515127.

¹Full version of a submission presented at the *Prague Stringology Conference* (Czech Technical University in Prague, Czech Republic, September 22–24, 2003).

³Partially supported by a Marie Curie fellowship, Wellcome and Royal Society grants.

⁴Supported by a grant from the Natural Sciences & Engineering Research Council of Canada.