Journal of Automata, Languages and Combinatorics 8 (2003) 4, 675–681 © Otto-von-Guericke-Universität Magdeburg

SPANNING 2-CONNECTED SUBGRAPHS IN ALPHABET GRAPHS, SPECIAL CLASSES OF GRID GRAPHS¹

A. N. M. SALMAN, HAJO BROERSMA

Department of Applied Mathematics, University of Twente Enschede, The Netherlands e-mail: {a.n.m.salman, h.j.broersma}@math.utwente.nl

and

Edy Tri Baskoro

Department of Mathematics, Institut Teknologi Bandung Bandung, Indonesia e-mail: ebaskoro@dns.math.itb.ac.id

ABSTRACT

A grid graph G is a finite induced subgraph of the infinite 2-dimensional grid defined by $Z \times Z$ and all edges between pairs of vertices from $Z \times Z$ at Euclidean distance precisely 1. A natural drawing of G is obtained by drawing its vertices in \Re^2 according to their coordinates. Apart from the outer face, all (inner) faces with area exceeding one (not bounded by a 4-cycle) in a natural drawing of G are called the holes of G. We define 26 classes of grid graphs called alphabet graphs, with no or a few holes. We determine which of the alphabet graphs contain a Hamilton cycle, i.e. a cycle containing all vertices, and solve the problem of determining a spanning 2-connected subgraph with as few edges as possible for all alphabet graphs.

Keywords: Alphabet graph, grid graph, Hamilton cycle, spanning 2-connected subgraph

1. Introduction

The infinite grid graph G^{∞} is defined by the set of vertices $V = \{(x,y) \mid x \in Z, y \in Z\}$ and the set of edges E between all pairs of vertices from V at Euclidean distance precisely 1. For any integers $s \ge 1$ and $t \ge 1$, the rectangular grid graph R(s,t) is the (finite) subgraph of G^{∞} induced by $V(s,t) = \{(x,y) \mid 1 \le x \le s, 1 \le y \le t, x \in Z, y \in Z\}$ (and just containing all edges from G^{∞} between pairs of vertices from V(s,t)). This graph R(s,t) is also known as the product graph $P_s \times P_t$ of two disjoint paths P_s and P_t . A grid graph is a graph that is isomorphic to a subgraph of R(s,t) induced by a subset of V(s,t) for some integers $s \ge 1$ and $t \ge 1$.

¹Full version of a lecture presented at the *Thirteenth Australasian Workshop on Combinatorial Algorithms* (Kingfisher Bay Resort, Fraser Island, Queensland, Australia, July 7-10, 2002).