SPANNING 2-CONNECTED SUBGRAPHS IN ALPHABET GRAPHS, SPECIAL CLASSES OF GRID GRAPHS ${ }^{1}$

A. N. M. Salman, Hajo Broersma
Department of Applied Mathematics, University of Twente
Enschede, The Netherlands

and
Edy Tri Baskoro
Department of Mathematics, Institut Teknologi Bandung
Bandung, Indonesia
e-mail: ebaskoro@dns.math.itb.ac.id

Abstract

A grid graph G is a finite induced subgraph of the infinite 2 -dimensional grid defined by $Z \times Z$ and all edges between pairs of vertices from $Z \times Z$ at Euclidean distance precisely 1. A natural drawing of G is obtained by drawing its vertices in \Re^{2} according to their coordinates. Apart from the outer face, all (inner) faces with area exceeding one (not bounded by a 4 -cycle) in a natural drawing of G are called the holes of G. We define 26 classes of grid graphs called alphabet graphs, with no or a few holes. We determine which of the alphabet graphs contain a Hamilton cycle, i.e. a cycle containing all vertices, and solve the problem of determining a spanning 2 -connected subgraph with as few edges as possible for all alphabet graphs.

Keywords: Alphabet graph, grid graph, Hamilton cycle, spanning 2-connected subgraph

1. Introduction

The infinite grid graph G^{∞} is defined by the set of vertices $V=\{(x, y) \mid x \in Z$, $y \in Z\}$ and the set of edges E between all pairs of vertices from V at Euclidean distance precisely 1 . For any integers $s \geq 1$ and $t \geq 1$, the rectangular grid graph $R(s, t)$ is the (finite) subgraph of G^{∞} induced by $V(s, t)=\{(x, y) \mid 1 \leq x \leq s$, $1 \leq y \leq t, x \in Z, y \in Z\}$ (and just containing all edges from G^{∞} between pairs of vertices from $V(s, t))$. This graph $R(s, t)$ is also known as the product graph $P_{s} \times P_{t}$ of two disjoint paths P_{s} and P_{t}. A grid graph is a graph that is isomorphic to a subgraph of $R(s, t)$ induced by a subset of $V(s, t)$ for some integers $s \geq 1$ and $t \geq 1$.

[^0]
[^0]: ${ }^{1}$ Full version of a lecture presented at the Thirteenth Australasian Workshop on Combinatorial Algorithms (Kingfisher Bay Resort, Fraser Island, Queensland, Australia, July 7-10, 2002).

