A SMALL EMBEDDING FOR PARTIAL 4-CYCLE SYSTEMS WHEN THE LEAVE IS SMALL ${ }^{1}$

Charles Curtis Lindner
Department of Discrete and Statistical Sciences, Auburn University
Auburn, Alabama, USA
e-mail: lindncc@mail.auburn.edu

Abstract

In this paper we give an embedding for odd n which improves the best known bound when the "leave" is small. In particular, we prove that a partial 4 -cycle system of odd order n with leave consisting of x edges can be embedded in a 4 -cycle system of order $n+2 x$.

Keywords: Embedding, 4-cycle systems, bound, partial 4-cycle systems

1. Introduction

A 4-cycle system of order n is a pair (S, C), where C is a collection of edge-disjoint 4cycles which partitions the edge set of the complete undirected graph K_{n} with vertex set S. It is well-known that the spectrum for 4 -cycle systems ($=$ the set of all n such that a 4 -cycle system of order n exists) is precisely the set of all $n \equiv 1(\bmod 8)$. (See for example [3].)

A partial 4-cycle system of order n is a pair (X, P), where P is a collection of edgedisjoint 4 -cycles of the edge set of K_{n} with vertex set X. The difference between a partial 4-cycle system and a 4 -cycle system is that the edge-disjoint 4-cycles belonging to a partial 4-cycle system do not necessarily include all of the edges of K_{n}.

A natural question to ask is the following: given a partial 4-cycle system (X, P) of order n, is it always possible to decompose $E\left(K_{n}\right) \backslash E(P)$ into edge-disjoint 4-cycles? $\left(E\left(K_{n}\right) \backslash E(P)=\right.$ the complement of the edge set of P in the edge set of K_{n}.) That is, can a partial 4 -cycle system always be completed to a 4 -cycle system? The answer to this question is no, since any partial 4 -cycle system of order $n \not \equiv 1(\bmod 8)$ (and most of the ones that are) cannot be completed.

So the following problem is of interest. Can we always embed a partial 4-cycle system in some 4 -cycle system? The partial 4 -cycle system (X, P) is said to be embedded in the 4 -cycle system (S, C) provided $X \subseteq S$ and $P \subseteq C$. Naturally, we would like the size of the containing system to be as small as possible.

[^0]
[^0]: ${ }^{1}$ Full version of a lecture presented at the Thirteenth Australasian Workshop on Combinatorial Algorithms (Kingfisher Bay Resort, Fraser Island, Queensland, Australia, July 7-10, 2002).

