RECTANGLE ENCLOSURE REPORTING IN LINEAR SPACE REVISITED ${ }^{1}$

George Lagogiannis, Christos Makris, Yannis Panagis, Spyros Sioutas and Kostas Tsichlas
Computer Engineering and Informatics Department, University of Patras
Patras, Greece
e-mail: \{lagogian, makri, panagis, sioutas, tsihlas\}@ceid.upatras.gr

Abstract

We present a new algorithm for reporting all the enclosures in a set of plane rectangles in $O(n \log n \log \log n+k \log \log n)$ time and linear space (k denotes the output size). The result is already known (it has already been achieved by two previous papers), however the proposed algorithm follows a different approach.

Keywords: Data structures, computational geometry, rectangle enclosure, space optimality

1. Introduction

The rectangle enclosure reporting problem, is the problem of reporting efficiently every rectangle pair within a set, so that the first rectangle of the pair, is fully enclosed by the second one. More formally the problem can be defined as following,

Problem 1 Given a set S of n iso-oriented rectangles in the plane, $S \subset \aleph^{2}$, report efficiently all the pairs of rectangles $\left(R, R^{\prime}\right)$ where $\left\{R, R^{\prime}\right\} \in S$ and R encloses R^{\prime}

Edelsbrunner and Overmars [4] have shown that the above problem is equivalent to the so called four-dimensional dominance searching problem. We therefore, give a brief notion of dominance. Consider points $p, q \in \Re^{4}$. Point $p\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is dominated by $q\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ if and only if $p_{i} \leq q_{i}, \forall i$. The pair (p, q) is also termed dominance pair. Hence, the dominance problem can be stated as:

Problem 2 Given a set of points $P \subset \Re^{4}$, report efficiently all the pairs (p, p^{\prime}) where $p, p^{\prime} \in P$ and p is dominated by p^{\prime}.

Under the above definition of dominance, it is easy to verify that Problem 1 can be reduced to Problem 2 by replacing, in linear time, each rectangle $R=\left[x_{l}: x_{r}\right] \times\left[y_{l}: y_{r}\right]$ with the point $p\left(-x_{l},-y_{l}, x_{r}, y_{r}\right)$. Therefore, discovering all dominance pairs $\left(p, p^{\prime}\right) \in$ P, is equivalent to reporting every enclosure pair $\left(R, R^{\prime}\right)$.

[^0]
[^0]: ${ }^{1}$ Full version of a lecture presented at the Thirteenth Australasian Workshop on Combinatorial Algorithms (Kingfisher Bay Resort, Fraser Island, Queensland, Australia, July 7-10, 2002).

