LANGUAGES RELATED TO THE PROPERTIES OF DISJUNCTIVITY AND CODE

Chen-Ming Fan
Management Information Department, National Chin-Yi Institute of Technology
Taichung, Taiwan 411
e-mail: fan@chinyi.ncit.edu.tw
and
Huei-Jan Shyr
Department of Applied Mathematics, National Chung-Hsing University
Taichung, Taiwan 402
e-mail: hjshyr@flower.amath.nchu.edu.tw

Abstract

In this paper, we define two new types of words, d_{1}-words and d_{2}-words and show that the free semigroup X^{+}can be represented as a disjoint union of the disjunctive languages $D(1)$, the set of all d-primitive words, $N_{d_{1}}$ the set of all d_{1}-words and $N_{d_{2}}$ the set of all d_{2}-words. Both the languages $N_{d_{1}}$ and $N_{d_{2}}$ are also shown to be disjunctive languages. We show that for any language $L \subseteq X^{+}$, the language $L \cdot Q$, where Q is the set of all primitive words, is not a 2 -code and we give a characterization of that $P \cdot Q^{(i)}$ is a 2-code for some prefix code P and $Q^{(i)}=\left\{f^{i} \mid f \in Q\right\}, i \geq 2$. We proved that each of the disjunctive languages $Q, D(1)^{(i)}, i \geq 1, D(n), n \geq 2, N_{d_{1}}$, and $N_{d_{2}}$ removing a code from it results a dense language. On the other hand, the set $Q^{(i)}, i \geq 2$ removing a code or Q removing a prefix code both results disjunctive languages. Any disjunctive language union a non-dense language is disjunctive. Also any disjunctive language removing a non-dense language is also shown to be disjunctive.

Keywords: Disjunctive language, prefix code, 2 -code, dense language, d_{1}-word, d_{2}-word

1. Introduction

In this paper we assume that X is a finite alphabet containing more than one letter. Let X^{*} be the free monoid generated by X. Any element of X^{*} is a word and any subset of X^{*} is a language. For any language L, let $|L|$ be the cardinality of L. For any two languages L_{1}, L_{2} contained in X^{*}, by $L_{1} \subseteq L_{2}$, we mean that L_{1} is a subset of L_{2}. We denote it by $L_{1} \subset L_{2}$ when $L_{1} \subseteq L_{2}$ and $L_{1} \neq L_{2}$. Let $X^{+}=X^{*} \backslash\{1\}$, where 1 is the empty word. For any two languages A and B, the concatenation of A and B is the set $A B=\{x y \mid x \in A, y \in B\}$ and $A^{+}=A \cup A^{2} \cup A^{3} \cup \ldots$. For a word $w \in X^{*}$, let $\lg (w)$ be the length of the word w, which is just the total number

