Journal of Automata, Languages and Combinatorics 8 (2003) 2, 353–360 © Otto-von-Guericke-Universität Magdeburg

WEIGHTED FINITE AUTOMATA AND METRICS IN CANTOR SPACE¹

LUDWIG STAIGER

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg von-Seckendorff-Platz 1, D-06099 Halle, Germany e-mail: staiger@informatik.uni-halle.de

ABSTRACT

We show how weighted finite automata define topologies on the set of all ω -words over a finite alphabet X. Moreover, we give a characterization of these topologies in terms of topologies on X^{ω} induced by languages $U \subseteq X^*$.

Keywords: Weighted finite automata, ω -words, topologies

1. Introduction

Weighted finite automata are used to describe fractal images (cf. [1, 2]). In particular, they play some rôle in the computation of the contraction coefficients for so-called Multiple Recursive Function Systems (MRFS are a combinations of finite automata with iterated function systems). This is explained in more detail in [6].

Here in a finite automaton $\mathcal{A} = (X, (0, \infty), Z, z_0, f, g)$ with output monoid $((0, \infty), \cdot)$ to each transition the contraction coefficient of the mapping φ_x corresponding to the input letter $x \in X$ is assigned. The resulting output g(s, w) is an upper bound to the contraction coefficient of the mapping $\varphi_w := \varphi_{x_1} \circ \cdots \circ \varphi_{x_n}$ ($w = x_1 \dots x_2$).

In case the contraction coefficients of φ_w for $w \to \xi \in X^{\omega}$ converge to zero the corresponding MRFS "draws a point for $\xi \in X^{\omega}$ ". The set of all such ξ can be described topologically by a suitable topology (depending on the automaton \mathcal{A} [6]).

Another kind of topology on X^{ω} are the *U*- δ -topologies introduced in [8] (for related topologies see also [5]). Here the distance between two ω -words $\xi, \eta \in X^{\omega}$ depends of the number of their common prefixes in the given language $U \subset X^{\omega}$.

In the present paper we give a relationship between both topologies. It turns out that every automaton-definable topology is a $U-\delta$ -topology for a suitable $U \subseteq X^*$.

A construction for $U \subseteq X^*$ from a given automaton is described. Conversely, we derive a property of automaton-definable topologies which proves that not every U- δ -topology can be defined by a weighted automaton. A last result shows that for every regular language $U \subseteq X^*$ the corresponding U- δ -topology is definable by a WFA.

¹Full version of a lecture presented at the Workshop Weighted Automata: Theory and Applications (Dresden University of Technology, Germany, March 4-8, 2002).