Journal of Automata, Languages and Combinatorics 8 (2003) 2, 145–185 © Otto-von-Guericke-Universität Magdeburg

AN EXTENSION THEOREM WITH AN APPLICATION TO FORMAL TREE SERIES¹

STEPHEN L. BLOOM²

Department of Computer Science, Stevens Institute of Technology Hoboken, NJ 07030, USA e-mail: bloom@cs.stevens-tech.edu

and

Zoltán Ésik³

Institute for Informatics, University of Szeged Szeged, Hungary e-mail: esik@sol.cc.u-szeged.hu

ABSTRACT

Suppose that T is a grove theory, and M is a Conway or iteration matrix theory which is a subtheory of T. We provide a sufficient condition under which the dagger operation on M can be extended to T so that T becomes a Conway or iteration theory. Moreover, we prove a general Kleene type theorem applicable to all grove theories which are Conway theories. We discuss applications to synchronization trees and formal tree series.

Keywords: Iteration theory, grove theory, formal tree series

1. Introduction

In many areas of theoretical and applied computer science, one is interested in solving systems of fixed point equations

$$x_1 = t_1(x_1, \dots, x_n, y_1, \dots y_p)$$

$$\vdots$$

$$x_n = t_n(x_1, \dots, x_n, y_1, \dots y_p).$$
(1)

where, for each $i \in [n]$, t_i is a function $t_i : A^{n+p} \to A$, for some structure A. The structure may be a poset of some kind, and the functions may be order-preserving or

¹Full version of a lecture presented at the Workshop Weighted Automata: Theory and Applications (Dresden University of Technology, Germany, March 4-8, 2002).

²Supported in part by NSF grant 0119916.

³Supported in part by BRICS, Denmark, NSF grant 0119916, and by grant no. T35163 from the National Foundation of Hungary for Scientific Research.