ON THE PALINDROMIC DECOMPOSITION OF BINARY WORDS

Olexandr Ravsky
Department of Mathematics, Ivan Franko National Lviv University
Universytetska 1, Lviv, Ukraine
e-mail: oravsky@mail.ru

Abstract

We prove a precise formula for the minimal number $K(n)$ such that every binary word of length n can be divided into $K(n)$ palindromes. Also we estimate the average number $\bar{K}(n)$ of palindromes composing a random binary word of the length n.

Keywords: Binary word, palindrome, measure of symmetry, measure of asymmetry

1. Introduction

The present note arose from the following problem proposed at International Mathematical Tournament of Towns [4, p. 8]:

Prove that every binary word of length 60 can be divided into 24 symmetric subwords and that the number 24 cannot be replaced by 14.
A word $w=a_{0} \ldots a_{n}$ is called symmetric if $a_{i}=a_{n-i}$ for all $i \leq n$. For symmetric words we shall use a more poetic term palindrome. Let S be the set of nonempty binary words over the alphabet $\{a, b\}$ and S^{1} be the set S with added the empty word. Observe that the set S^{1} is a semigroup with respect to the operation of concatenation. The length of a word $w \in S^{1}$ will be denoted by $l(w)$. In particular, the empty word has length 0 .

The above tournament task suggests three general problems:
(1) Given a word $w \in S$ find the minimal number $m(w)$ of palindromes whose product in S is equal to w (thus the number $m(w)$ can be thought as a measure of asymmetry of w);
(2) Given a positive integer n find the number $K(n)=\max \{m(w): l(w)=n\}$ equal to the maximal asymmetry measure of the "worst" binary word of length n;
(3) Estimate the average asymmetry measure $\bar{K}(n)=2^{-n} \sum\{m(w): l(w)=n\}$ of a random binary word of length n.

