A NEW MEASURE OF ASYMMETRY OF BINARY WORDS

Olexandr Ravsky
Department of Mathematics, Ivan Franko Lviv National University
Universytetska 1, Lviv, Ukraine
e-mail: oravsky@mail.ru

Abstract

A binary word is symmetric if it is a palindrome or an antipalindrome. We define a new measure of asymmetry of a binary word equal to the minimal number of letters of the word whose deleting from the word yields a symmetric word and obtain upper and lower estimations of this measure.

Keywords: Palindrome, measure of symmetry, measure of asymmetry

In this paper under the term word we shall understood the binary word over the alphabet $\{a, b\}$. The set of all words can naturally be thought as a free semigroup with two generators, which we shall use in the notation of the words. There are various approaches to a measure of asymmetry of a word or a group coloured into two colours $[2,4]$ (see [1] for more references). In the present paper we investigate a new measure of symmetry of a word, suggested by the question of Ihor Protasov [3]. By a symmetric word we shall understood a word which is a palindrome or an antipalindrome. A word $w=a_{1} \ldots a_{n}$ is called a palindrome (respectively, an antipalindrome) if $a_{i}=$ a_{n-i+1} (respectively, $a_{i} \neq a_{n-i+1}$) for all $i \leq n$. Given a word w let $S_{d}(w)$ be the minimal number of letters of w whose deleting from w yields a palindrome or an antipalindrome. Observe that a word w is symmetric if and only if $S_{d}(w)=0$. Thus the number $S_{d}(w)$ can be thought as an asymmetry measure of w. For every positive integer n let $S_{d}(n)=\max \left\{S_{d}(w): w \in S, l(w)=n\right\}$ be the maximal asymmetry measure $S_{d}(w)$ of a word w of length $l(w)=n$.

Ihor Protasov observed that $S_{d}(n) \leq n / 3$ for small n and asked in [3] if this estimation holds for every n. Computer calculations show that this conjecture fails already for $n=10$. The values of $S_{d}(n)$ for $n \leq 20$ are given in Table 1 .

The main result of the paper is the following theorem.
Theorem 1 For every $n \geq 2$ the number $S_{d}(n)$ lies in the range

$$
\left[\frac{n+2\left[\frac{n-3}{7}\right]}{3}\right] \leq S_{d}(n) \leq\left[\frac{n}{2}\right] .
$$

