THERE ARE NO ITERATED MORPHISMS THAT DEFINE THE ARSHON SEQUENCE AND THE σ-SEQUENCE

Sergey Kitaev
Matematik, Chalmers tekniska högskola och Göteborgs universitet
S-41296 Göteborg, Sweden
e-mail: kitaev@math.chalmers.se

Abstract

In [3], Berstel proved that the Arshon sequence cannot be obtained by iteration of a morphism. An alternative proof of this fact is given here. The σ-sequence was constructed by Evdokimov in order to construct chains of maximal length in the n dimensional unit cube. It turns out that the σ-sequence has a close connection to the Dragon curve [10]. We prove that the σ-sequence cannot be defined by iteration of a morphism.

Keywords: Symbolic sequence, iterated morphism, Arshon sequence

1. Introduction and Background

In 1937, Arshon gave a construction of a sequence of symbols w over the alphabet $\{1,2,3\}$, constructed as follows: Let $w_{1}=1$. For $k \geq 1, w_{k+1}$ is obtained from w_{k} by replacing the letters of w_{k} in odd positions as follows:

$$
1 \rightarrow 123,2 \rightarrow 231,3 \rightarrow 312
$$

and in even positions as follows:

$$
1 \rightarrow 321,2 \rightarrow 132,3 \rightarrow 213
$$

Then

$$
w_{2}=123, \quad w_{3}=123132312
$$

and each w_{i} is a prefix of w_{i+1}. Thus the infinite symbolic sequence $w=\lim _{n \rightarrow \infty} w_{n}$ is well defined. It is called the Arshon sequence.

This method of constructing w is called the Arshon Method (AM), and ψ will denote the indicated map of the letters $1,2,3$ according to position as described above.

We will denote the natural decomposition of w in 3-blocks by lower braces:

$$
w=\underbrace{123} \underbrace{132} \underbrace{312} \cdots
$$

