ABOUT SOME OVERLAP-FREE MORPHISMS ON A n-LETTER ALPHABET ${ }^{1}$

Patrice Séébold
LaRIA, Université de Picardie Jules Verne
5, rue du Moulin Neuf, F-80000 Amiens, France
e-mail: seebold@laria.u-picardie.fr

Abstract

In 1912, the Norwegian mathematician Axel Thue was the first to describe an overlapfree binary infinite word. This word was generated by a morphism which is called, since the works of Morse, the Thue-Morse morphism.

Here we study morphisms, generalizing the Thue-Morse morphism in the case of alphabets with more than two letters, which are obtained from a construction made by Prouhet in 1851. We examine in which case these morphisms are overlap-free and prove that the Prouhet words they generate are rigid. We also give a link with the construction realized by Arshon in 1937, proving in particular that the n-letter Arshon word is generated by morphism if and only if n is an even number. These words are also rigid.

Keywords: Overlap-free morphisms and words, Thue-Morse morphism and word, Prouhet words, Arshon words, rigid words

1. Introduction

In 1906, Thue was the first to publish a paper [29] in which were explicitly studied the combinatorial properties of strings of letters. In 1912, he published another paper [30] in which was in particular introduced a binary infinite overlap-free word, now called the Thue-Morse word. Thue's results were rediscovered independently years after (see Hedlund, 1967 [12] and, to know what Thue exactly did, Berstel, 1992 [5]). In particular Morse [20] proved again that the Thue-Morse word \mathbf{t} is overlap-free. This word is generated by the Thue-Morse morphism μ defined on the alphabet $A=\{0,1\}$ by $\mu(0)=01, \mu(1)=10$. Thus $\mathbf{t}=0110100110010110100101100110100110 \ldots$ It also appears as a special case of what Adler and Li [1] called Prouhet sequences (see Prouhet, 1851 [23]). Actually Prouhet gave an algorithm to realize an arithmetic construction (a solution to the so-called Tarry-Escott problem, see Lehmer, 1947 [15], Hardy and Wright, 1985 [10]); this algorithm produces intermediate infinite words, and it happens that on the two-letter alphabet this word is the Thue-Morse one. Also, these words are generated by morphisms and, in the two-letter case, the morphism is μ.

[^0]
[^0]: ${ }^{1}$ Full version of a submission presented at the Third International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (Vienna, Austria, July 20-22, 2001).

