ON THE NUMBER OF DISTINCT LANGUAGES ACCEPTED BY FINITE AUTOMATA WITH n STATES ${ }^{1}$

Michael Domaratzki
School of Computer Science, Queen's University
Kingston, ON K7L 3N6, Canada
e-mail: domaratz@cs.queensu.ca
Derek Kisman
5760 Buckboard Rd. NW
Calgary, AB T3A 4R6, Canada
e-mail: dkisman@acm.org
and
Jeffrey Shallit ${ }^{2}$
School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1, Canada
e-mail: shallit@uwaterloo.ca

Abstract

We give asymptotic estimates and some explicit computations for both the number of distinct languages and the number of distinct finite languages over a k-letter alphabet that are accepted by deterministic finite automata (resp. nondeterministic finite automata) with n states.

Keywords: Enumeration, finite automata, minimal automaton, nondeterministic finite automaton

1. Introduction

The problem of enumeration of finite automata according to various criteria (with or without distinguished initial state, initially connected ${ }^{3}$, strongly connected, nonisomorphic, etc.) was considered as early as 1959, when V.A. Vyssotsky apparently wrote a Bell Laboratories memorandum on this subject [35]. (We have not been able to obtain a copy.) Counting finite automata was problem 19 in Harary's 1960 list

[^0]
[^0]: ${ }^{1}$ Full version of a submission presented at the Third International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (Vienna, Austria, July 20-22, 2001).
 ${ }^{2}$ Research supported in part by a grant from NSERC.
 ${ }^{3}$ That means, for each state q there exists a directed path from the distinguished start state to q.

