
Journal of Automata, Languages and Combinatorics 7 (2002) 2, 247—258
© Otto-von—Guericke—Universitat Magdeburg

THE COMPUTING POWER
OF PROGRAMS OVER FINITE MONOIDS 1

PASCAL TESSON and DENIS ΤΗέΒ1ΕΝ2
School of Computer Science, McGz'll University

3480 University, Montreal, Quebec, H3A 2A7 Canada
e-mail: {ptesso,denis}@cs .mcgill .ca

ABSTRACT
The formalism of programs over monoids has been studied for its close connection
to parallel complexity classes defined by small—depth boolean circuits. We investigate
two basic questions about this model. When is a monoid rich enough that it can
recognize arbitrary languages (provided no restriction on length is imposed)? When is
a monoid weak enough that all its computations can be realized in polynomial length?
Surprisingly, these two properties appear to be dual to each other.

Keywords: Programs over monoids, nilpotent' groups, unambiguous concatenation,
wreath product

1. Introduction

Finite monoids can be used as language recognizers in many different ways. Classi—
cally, one would use a morphism φ : Α* -> Μ and a subset F ς Μ to recognize the
language L:φ-1(Ρ) ς Α*. It is well-known that this framework characterizes the
class of regular languages and the algebraic point of View provides a most powerful set
of tools to understand and classify the combinatorial properties of such languages (see
[5] and [6] for a detailed description of this approach). In this model, the morphism
can be seen as a very uniform way to translate a string a1 ...ο… in A* to a string
¢(a1) . . .Με…) οί monoid elements which is then evaluated in the monoid to yield the
value of the “machine” M on its input.

In [1] and [4], a more general device to transform a string in A* into a string of
monoid elements was introduced. An n—input M -program takes as input a word of
length n over the alphabet A. It is allowed to query the input positions in arbitrary
order and each position can be queried several times. At each query, the letter read
in the given position is transformed to a monoid element (precise definition is given
in the next section). In this way, the input word 21) = a1 . . . an gives rise to a string

1Full version of a submission presented at the workshop Logic and Algebra for Concurrency held
at Dresden University of Technology (Germany), September 13-16, 2000.

2Supported by NSERC and FCAR. This'work was completed while the seCond author was in
Germany, supported by the von Humboldt Foundation.


