Journal of Automata, Languages and Combinatorics 7 (2002) 1, 95–108 © Otto-von-Guericke-Universität Magdeburg

THE PARALLEL COMPLEXITY OF DETERMINISTIC AND PROBABILISTIC AUTOMATA¹

Carlo Mereghetti

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano – Bicocca via Bicocca degli Arcimboldi 8, I-20126 Milano, Italy e-mail: mereghetti@disco.unimib.it

 and

BEATRICE PALANO

Dipartimento di Informatica, Università degli Studi di Torino corso Svizzera 185, I-10149 Torino, Italy e-mail: beatrice@di.unito.it

ABSTRACT

A deterministic (probabilistic) automaton is said to be in TC^0 whenever its transitions (stochastic event) can be computed by threshold circuits of polynomial size and constant depth. Here, we prove that:

- The class of deterministic automata in TC^0 is closed under homomorphism, subautomaton, and α_0 -product operations.
- The class of k-state deterministic (probabilistic) automata is contained in TC^0 if and only if $k \leq 4$ ($k \leq 2$), unless $TC^0 = NC^1$.

Moreover, the possibility of ranking regular languages in TC^0 is related to the group-structure of their syntactic monoid.

Keywords: Threshold circuits, deterministic and probabilistic automata, algebraic theory of automata

1. Introduction

In this work, we study the parallel complexity of computing transitions in deterministic automata and stochastic events defined by probabilistic automata. As computational model, we use threshold circuits [18]. We are interested in solving problems by means of threshold circuits with constant depth. To this regard, we focus on the class TC^{0} [8]

¹Partially supported by MURST, under the project "Modelli di calcolo innovativi: metodi sintattici e combinatori". Some results in this paper were presented in a preliminary form [15] at the 6th Italian Conference on Theoretical Computer Science (ICTCS 98), Prato, Italy, November 9–11, 1998.