THE BOOLEAN STRUCTURE OF DOT-DEPTH ONE ${ }^{1}$

Christian Glasser ${ }^{2}$
Theoretische Informatik, Universität Würzburg
Am Hubland, D-97074 Würzburg, Germany
e-mail: glasser@informatik.uni-wuerzburg.de
and
Heinz Schmitz ${ }^{3}$
sd\&m AG, software design \& management
Thomas-Dehler-Str. 27, D-81737 München, Germany
e-mail: heinz.schmitz@sdm.de

Abstract

By definition, the class \mathcal{B}_{1} of dot-depth one languages is the Boolean closure of the class $\mathcal{B}_{1 / 2}$ of languages that can be written as finite unions of $u_{0} A^{+} u_{1} \ldots A^{+} u_{n}$, where $u_{i} \in A^{*}$. So dot-depth one languages can be described by Boolean combinations of patterns ($u_{0}, u_{1}, \ldots, u_{n}$) in words which captures locally testable and piecewise testable properties. From a descriptional complexity point of view, the lengths of the u_{i} reflect sequential aspects, while the Boolean operations measure combinatorial complexity.

We prove that the Boolean hierarchy over $\mathcal{B}_{1 / 2}$ is decidable and strict, which has consequences in first-order logic and complexity theory. Moreover, we effectively characterize the fine structure of \mathcal{B}_{1} w.r.t. the mentioned sequential and combinatorial measures. This allows the exact location of a given language in this two-dimensional landscape in a computable way.

Keywords: dot-depth hierarchy, Boolean hierarchy, decidability.

1. Introduction

We study starfree regular languages and further investigate one of its subclasses. Let A be some finite alphabet with $|A| \geq 2$. The class \mathcal{B}_{1} of dot-depth one languages is the Boolean closure of the class $\mathcal{B}_{1 / 2}$ of languages of A^{+}(the set of nonempty words over A) that can be written as finite unions of languages $u_{0} A^{+} u_{1} \ldots A^{+} u_{n}$, where $u_{i} \in A^{*}$ (the set of words over A) and $n \geq 0$. Dot-depth one is of interest in many fields of research and we give a brief survey.

[^0]
[^0]: ${ }^{1}$ Full version of a submission presented at the Second International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures held in London, Ontario, Canada, July 27-29, 2000.
 ${ }^{2}$ Supported by the Studienstiftung des Deutschen Volkes.
 ${ }^{3}$ Partially supported by the Deutsche Forschungsgemeinschaft, grant Wa 847/4-1.

