HOMOMORPHIC SIMULATION AND LETICHEVSKY'S CRITERION ${ }^{1,2}$

PÁL Dömösi
Institute of Mathematics and Informatics, University of Debrecen
Egyetem tér 1, H-4032, Debrecen, Hungary
e-mail: domosi@math.klte.hu
and
Zoltán Ésik
Department of Computer Science, University of Szeged
Árpád tér 1, H-6720 Szeged, Hungary
e-mail: esik@inf.u-szeged.hu

In honour of Professor Masami Ito on his $60^{\text {th }}$ birthday.

Abstract

Using the Krohn-Rhodes Decomposition Theorem and the Letichevsky Decomposition Theorem, we prove that there is a finite class of automata which is complete with respect to the homomorphic representation (and simulation) under the general product but not complete with respect to the homomorphic simulation under the ν_{2}-product.

Keywords: composition of automata.

1. Introduction

Products of automata, transducers and other abstract models of computational devices play an important role in theoretical computer science. In order to decrease the complexity of the general product, F. GÉCSEG [12] introduced a family of semi-cascade products, called α_{i}-products, where the index i is a nonnegative integer which denotes the maximal admissible length of feedbacks. ${ }^{3}$ B. ImReh [17] characterized the isomorphically complete classes under the α_{i}-products. Z. ÉSIK [8] proved that Letichevsky's

[^0]
[^0]: ${ }^{1}$ Full version of a submission presented at the Second International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures held in London, Ontario, Canada, July 27-29, 2000.
 ${ }^{2}$ This work was supported by grants of the "Automata \& Formal Languages" project of the Hungarian Academy of Sciences and the Japanese Society for Promotion of Science (No 15), the Hungarian National Foundation for Scientific Research (OTKA T030140), and the Ministry of Education of Hungary (FKFP 704).
 ${ }^{3}$ In a linearly ordered sequence of automata, a feedback of length i to the j-th component connects the $i+j-1$ st component to the j-th, so that a feedback of length 1 connects a factor to itself.

