Journal of Automata, Languages and Combinatorics **6** (2001) 3, 253–262 © Otto-von-Guericke-Universität Magdeburg

THE DEPTH OF A HYPERSUBSTITUTION

KLAUS DENECKE, JÖRG KOPPITZ

Fachbereich Mathematik, Universität Potsdam Postfach 601553, D-14415 Potsdam, Germany e-mail: {kdenecke, koppitz}@rz.uni-potsdam.de

and

Slavcho Shtrakov

Faculty of Mathematics and Natural Sciences, South-West-University Blagoevgrad BG-2700 Blagoevgrad, Bulgaria e-mail: shtrakovQaix.swu.bg

ABSTRACT

For given depths of the terms s, t_1, \ldots, t_n a formula will be proved to calculate the depth of the composed term $s(t_1, \ldots, t_n)$ and if σ is a hypersubstitution and t is a term we derive a formula for the depth of $\hat{\sigma}[t]$.

Keywords: depth of a term, high of a tree, composition of terms, hypersubstitution.

1. Introduction

At first we remember of the following definition of terms. Let $X = \{x_1, \ldots, x_n, \ldots\}$ be any countably infinite (standard) alphabet of variables and let $X_n = \{x_1, \ldots, x_n\}$ be an *n*-element alphabet. Let $(f_i)_{i \in I}$ be an indexed set which is disjoint from X. Each f_i is called an n_i -ary operation symbol where $n_i \ge 1$ is a natural number. Let τ be a function which assigns to every f_i the number n_i as its arity. The function τ or the sequence of values of τ , written as $(n_i)_{i \in I}$, is called a type. An *n*-ary term of type τ is defined inductively as follows:

- (i) The variables x_1, \ldots, x_n are *n*-ary terms.
- (ii) If t_1, \ldots, t_m are *n*-ary terms and if f_i is an n_i -ary operation symbol then $f_i(t_1, \ldots, t_{n_i})$ is an *n*-ary term.
- (iii) Let $W_{\tau}(X_n)$ be the smallest set which contains x_1, \ldots, x_n and is closed under finite application of (ii). Every $t \in W_{\tau}(X_n)$ is called an *n*-ary term of type τ .

We remark that by this definition every *n*-ary term is also (n + 1)-ary. The set $W_{\tau}(X) := \bigcup_{n=1}^{\infty} W_{\tau}(X_n)$ is the set of all terms of type τ .