
Journal of Automata, Languages and Combinatorics 6 (2001) 1, 51—74
© Otto-von-Guericke—Universitat Magdeburg

ON THE POWER OF SUBROUTINES
FOR FINITE STATE MACHINES

MARKUS E. NEBEL
Μπέτυ! far Informatik, Johann Wolfgang Goethe-Universita't

D-60054 Frankfurt am Main, Germany
e-mail: nebel©sads . informatik .uni-frankfurt .de

ABSTRACT
In this paper we extend the finite state machines by a subroutine concept. Two imple-
mentations are considered. The first implementation yields a new class of languages
which is a subclass of the context-free languages. The second one leads to an alter-
native automata-model for the context-free languages. Besides the generative capacity
other properties like determinism, reversal languages, etc. are also studied. We prove
that determinism for the second implementation is equivalent to the notion of LL(1)-
languages. The motivation for those observations comes from a description language for
plot data called DPF which is used in practice and which possesses simple non—regular
constructions only.
Keywords: automata—theory, deterministic parsing, formal languages.

1. Introduction
The generative capacity of finite state machines or alternatively regular expressions,
i.e. right-linear grammars, suffices only for a few examples of the application of for-
mal languages. We often need the possibility to express couplings between different
parts of a word, e. g. in programming languages where the start of a loop has to be
terminated somewhere later in the program. One possibility to obtain such a cou-
pling is to think of a finite state machine with a subroutine concept. In this paper two
models are considered on how to extend a normal finite state machine by a subroutine
concept.

0 The weak model: Here, the finite state machine is extended by a stack on
which return-addresses (i. e. states) may be stored. There is no real call com-
mand for the subroutine-call. After pushing the return address one has to use
a normal transition to give the control to the subroutine (see Section 3).

o The strong model: Here, the weak model is extended by a real call command
(see Section 4).

In both concepts a final state may by interpreted as a signal to return, i.e. to continue
the computation with the state on top of the stack.
Immediately the question arises: What generative capacity do both models imply?

In the following sections we will answer this question.


