ON THE DIAMETER OF VARIOUS CLASSES OF H SYSTEMS ${ }^{1,2}$

Andrei Păun
Department of Computer Science, University of Western Ontario London, Ontario, Canada N6A 5B7
e-mail: apaun@csd.uwo.ca

Abstract

We investigate the complexity of various classes of H systems from the point of view of the length of their splicing rules. Specifically, we consider the diameter of an H system, the quadruple of integers representing the maximal length of strings in the rules of the system. We systematically examine the classes of controlled and distributed H systems from the monograph [8]. Improvements of the results in [8] with respect to the measure called diameter are obtained.

Keywords: DNA, splicing, H systems, controlled H systems, formal languages.

1. Introduction; H Systems

The extended H systems are generative mechanisms based on the splicing operation introduced in [3]. A splicing rule corresponds to two restriction enzymes producing sticky ends which match each other, hence can be pasted by a ligation reaction. Because the enzymes have recognizing patterns of a small length, it is of interest to consider H systems which use splicing rules of a small dimension. This parameter, called the radius of a splicing rule, was already considered in several papers (see references in [8]). A refinement is considered in [4], which is called the diameter of a rule.

First, we recall some results from $[4,5,6]$, then we give a series of new results.
A splicing rule (over an alphabet V) is a string $r=u_{1} \# u_{2} \$ u_{3} \# u_{4}$, where u_{1}, u_{2}, $u_{3}, u_{4} \in V^{*}$ and $\#, \$$ are two special symbols not in V. (V^{*} is the free monoid generated by the alphabet V under the operation of concatenation; the empty string is denoted by λ; the length of $x \in V^{*}$ is denoted by $|x|$.)

[^0]
[^0]: ${ }^{1}$ Full version of a submission presented at the First International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures held in Magdeburg, Germany, July 20-23, 1999.
 ${ }^{2}$ Work supported by Grant OGP0041630 of the Natural Sciences and Engineering Research Council of Canada.

