ON A FAMILY OF NONDETERMINISTIC FINITE AUTOMATA ${ }^{1}$

Hing Leung
Department of Computer Science, New Mexico State University
Las Cruces, New Mexico 88003, USA
e-mail: hleung@cs.nmsu.edu

Abstract

In this paper, we study the succinctness properties of a family of one-way n-state nondeterministic finite automata A_{n} over a two-letter alphabet. It is shown ([4], [5]) that the smallest equivalent deterministic finite automaton has 2^{n} states, the smallest equivalent polynomially ambiguous nondeterministic finite automaton has $2^{n}-1$ states, and any equivalent nondegenerate sweeping automaton has at least 2^{n} states. We conjecture that the family A_{n} can be used to show that the complexity class L (deterministic logarithmic space) is properly contained in NL (nondeterministic logarithmic space), and any equivalent two-way deterministic finite automaton would require an exponential number of states.

Keywords: Finite automata, sweeping automata, descriptional complexity.

1. Introduction

The simplest machine model for denoting regular languages is the one-way deterministic finite automaton. It is well known that the use of nondeterminism and two-way movements of the tape head would not change the class of languages denoted. The readers are referred to [3] for the basic definitions of one-way deterministic finite automata (DFA), one-way nondeterministic finite automata (NFA), two-way deterministic finite automata (2DFA) and two-way nondeterministic finite automata (2NFA).

Tradeoffs in the descriptional complexity of different finite automata models were extensively studied. Meyer and Fischer [6] showed that there exists a family of n-state NFA such that the equivalent smallest DFA has 2^{n} states. Moore [8] also proved the same result using a different family of languages.

In this paper, we study the succinctness properties of a family of NFA A_{n} (defined in Section 2) over a two-letter alphabet. It is shown [4] that the smallest equivalent DFA has 2^{n} states and the smallest equivalent polynomially ambiguous NFA has $2^{n}-1$ states.

[^0]
[^0]: ${ }^{1}$ Full version of an invited lecture presented at the First International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures held in Magdeburg, Germany, July 20-23, 1999.

