Journal of Automata, Languages and Combinatorics 4 (1999) 4, 351–360 © Otto-von-Guericke-Universität Magdeburg

SOME PROPERTIES OF LEFT NON-CANCELLATIVE LANGUAGES¹

HUEI-JAN SHYR and SHYR-SHEN YU Department of Applied Mathematics, National Chung-Hsing University Taichung, Taiwan 402 e-mail: {hjshyr,pyu}@flower.amath.nchu.edu.tw

ABSTRACT

Let X^* be the free monoid generated by an alphabet X consisting of more than one letter. Let $X^+ = X^* \setminus \{1\}$, where 1 is the empty word. The family of languages $\mathcal{M} = \{L \mid L \subseteq X^+ \text{ or } L = \{1\}\}$, is a monoid under the catanation operation, which is known as the monoid of languages. A language $L \in \mathcal{M}$ is left cancellative if $LL_1 = LL_2$ for $L_1, L_2 \in \mathcal{M}$ always implies that $L_1 = L_2$. SHYR has shown that for a language L which is left non-cancellative always exists a word $u \in X^+$ such that $LX^+ = LX_u^+$, where $X_u^+ = X^+ \setminus \{u\}$. This paper is a study of some algebraic properties of left non-cancellative languages. We define for a given word $u \in X^+$, the set $\mathcal{L}_u = \{L \in \mathcal{M} \mid LX^+ = LX_u^+\}$ and for a left non-cancellative language $L \in \mathcal{M}$, the set $\operatorname{Nu}(L) = \{u \in X^+ \mid LX^+ = LX_u^+\}$. We show that \mathcal{L}_u is a left ideal of \mathcal{M} and $\operatorname{Nul}(L)$ is a right ideal of X^* . We give a characterization of a language L which is in \mathcal{L}_u and a characterization of a word u which is in $\operatorname{Nul}(L)$. A characterization of maximal null languages is also obtained. Two languages L_1 and L_2 in \mathcal{M} are said to be nullequivalent if $\operatorname{Nul}(L_1) = \operatorname{Nul}(L_2)$. The null-equivalent relation is an equivalence relation defined on \mathcal{M} which is not a left congruence relation and also not a right congruence relation. A characterization of two languages being null-equivalent is obtained.

Keywords: Monoid of languages, left cancellative language, equivalence relation, regular.

1. Introduction

Let X be an alphabet consisting of more than one letter and let X^* be the free monoid generated by X. Let $X^+ = X^* \setminus \{1\}$, where 1 is the empty word. Any subset of X^* is a *language* and for any two languages L_1 and L_2 , the *catenation* of L_1 and L_2 is the set $L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$. We are interested in the family of languages $\mathcal{M} = \{L \mid L \subseteq X^+ \text{ or } L = \{1\}\}$, which is a monoid under the catenation operation and call it the monoid of languages (see [3]). A language $L \in \mathcal{M}$ is a prefix code if $L \cap LX^+ = \emptyset$. Following SHYR, we call a language $L \in \mathcal{M}$ left cancellative if $LL_1 = LL_2, L_1, L_2 \in \mathcal{M}$, always implies that $L_1 = L_2$. The family of left cancellative

 $^{^1\}mathrm{This}$ paper was supported by the National Science Council R.O.C. under Grant NSC 89-2115-M-005-005