SEQUENCES OBTAINED FROM A SERIES OF PERMUTATIONS OF BORDERS AND ULTIMATELY PERIODIC WORDS ${ }^{1}$

Jean-Pierre Duval ${ }^{2}$
Laboratoire Informatique, Faculté des Sciences, Université de Rouen
F-76821 Mont Saint Aignan Cedex, France
e-mail: jean-pierre.duval@dir.univ-rouen.fr
and
Laurent Mouchard ${ }^{3}$
LIFAR - ABISS, Faculté des Sciences, Université de Rouen
F-76821 Mont Saint Aignan Cedex, France
Dept. of Computer Science, King's College London, Strand, London WC2R 2LS, UK
e-mail: laurent.mouchard@dir.univ-rouen.fr

Abstract

A word of length n over an alphabet A is a sequence $x=a_{1} \ldots a_{n}$ of letters of A. A "long enough" or one-sided word over A is an infinite right word, that is an infinite sequence $a_{1} \ldots a_{i} \ldots$ of elements of A. An integer p is a period of the word in the interval $[j \cdots k]$ if we have $a_{i}=a_{i+p}$ for those indices i and $i+p$ in the considered interval. An infinite word is ultimately periodic with period p if for a given integer j the word $a_{j} \ldots$ has period p. A word u is a border of a word w if u is both prefix and suffix of this word, that is $w=u \cdot x=y \cdot u$ for two words x and y. The word $w^{\prime}=x \cdot u$ is obtained from the word $w=u \cdot x=y \cdot u$ by the permutation of border u.

The question of interest here is to know if a sequence constructed from an initial word w by iterating permutation of border is constant from a certain rank. The results exposed here are an unpublished answer we offered to M. P. Schützenberger to a question concerning the characterization of the period of an ultimately periodic word.

Keywords: Periodicity, permutation of border, ultimately periodic word.

1. Introduction

A word u is a border of a word w if and only if u is both prefix and suffix of w, that is, there exist two words x and y such that $w=u \cdot x=y \cdot u$. Any word has at least two trivial borders: the empty word ϵ and the word itself, but the borders

[^0]
[^0]: ${ }^{1}$ Full version of a submission presented at the "Mons' Days of Theoretical Computer Science" at the University of Mons-Hainaut, Belgium, March 2-4, 1998.
 ${ }^{2}$ Supported by ABISS.
 ${ }^{3}$ Partially supported by CNRS Programme Informatique et Génome.

