# DECISION ISSUES ON FUNCTIONS REALIZED BY FINITE AUTOMATA ${ }^{1}$ 

Christian Choffrut<br>L.I.A.F.A., Université Paris 7<br>Tour 55-56, 1 er étage, 2 Pl. Jussieu, F-75251 Paris Cedex, France<br>$e$-mail: christian.choffrut@liafa.jussieu.fr<br>Hratchia Pelibossian<br>Acknosoft<br>$58 A$ rue du Dessous des Berges, F-75013 Paris, France<br>$e$-mail: pelibossian@acknosoft.fr<br>and<br>Pierre Simonnet<br>Faculté des Sciences, Université de Corse Quartier Grossetti, BP 52 20250, Corte, France<br>$e$-mail: simonnet@lotus.univ-corse.fr


#### Abstract

Consider a numeration system and a finite set of symbols. Each finite (resp. infinite) sequence on this set represents an integer (resp. a real). Synchronous two-tape automata are devices that define a sequence-to-sequence mapping and can thus be interpreted as performing a relation on integers (resp. reals).

Given a numeration system belonging to some natural family defined in this paper and a synchronous two-tape automaton, we show that the following questions are decidable in polynomial time: whether the relation is a function and if this is the case whether it is monotone, injective, continuous (for the reals).


Keywords: Numeration systems, on-line functions of numbers, synchronous automata, decision problems.

## 1. Introduction

Let $D$ be some finite alphabet of symbols, (a set of "digits"). A numeration system is a function $\pi$ that associates with each sequence of symbols of $D$, a number of which it is a representation. Consider further a mapping $f$ from sequences to sequences performed by some device. We say this device computes a numerical function or (in

[^0]
[^0]:    ${ }^{1}$ Full version of a submission presented at the "Mons' Days of Theoretical Computer Science" at the University of Mons-Hainaut, Belgium, March 2-4, 1998.

