NFA TO DFA TRANSFORMATION FOR FINITE LANGUAGES OVER ARBITRARY ALPHABETS ${ }^{1}$

Kai Salomaa and Sheng Yu
Department of Computer Science, University of Western Ontario
London, Ontario, Canada N6A 5B7
e-mail: \{ksalomaa, syu\}@csd.uwo.ca

Abstract

We consider the number of states of a DFA that is equivalent to an n-state NFA accepting a finite language over an arbitrary alphabet. We show that, for any n-state NFA accepting a finite language over a k-letter alphabet, $n, k>1$, there is an equivalent DFA of $O\left(k^{n} /\left(\log _{2} k+1\right)\right)$ states, and show that this bound is optimal in the worst case.

Keywords: formal languages, finite automata, state complexity.

1. Introduction

It is well-known that for each positive integer n, there exists a regular language L such that L is accepted by an n-state NFA and any complete DFA accepting L requires at least 2^{n} states [3]. However, the same statement is not true if L is required to be finite. In [2], MANDL showed that for each n-state NFA accepting a finite language over a two-letter alphabet, there exists an equivalent DFA which has $O\left(2^{\frac{n}{2}}\right)$ states; more specifically, no more than $2^{\frac{n}{2}+1}-1$ states if n is even and $3 \cdot 2^{\left\lfloor\frac{n}{2}\right\rfloor}-1$ states if n is odd. In [2], it was also shown that these bounds are optimal in the worst case. However, there have been no corresponding results concerning finite languages over an arbitrary k-letter alphabet, $k \geq 2$. Also, the proofs in [2] for the two-letter alphabet case are rather sketchy.

In this paper, we first give detailed proofs for the two-letter alphabet case. Then, as the main result of this paper, we give the optimal upper-bounds for the general cases of the problem, i.e., for the cases where finite languages are over an arbitrary k-letter alphabet, $k \geq 2$. Specifically, we show that for any n-state NFA accepting a finite language over a k-letter alphabet, $k \geq 2$, we can construct an equivalent DFA of $O\left(k^{n /\left(\log _{2} k+1\right)}\right)$ states; and we show that for each k-letter alphabet, $k \geq 2$, and for each $n \geq 2$, there exists a finite language L accepted by an n-state NFA such that the number of states of any DFA accepting L is $\Omega\left(k^{n /\left(\log _{2} k+1\right)}\right)$. One may observe that this bound, as a function of k, approaches to 2^{n} when k becomes larger.

[^0]
[^0]: ${ }^{1}$ This research is supported by the Natural Sciences and Engineering Research Council of Canada grants OGP0041630.

