# NEW RESULTS ON THE STACK RAMIFICATION OF BINARY TREES 

Markus E. Nebel<br>Fachbereich Informatik, Johann Wolfgang Goethe-Universität, D-60054 Frankfurt am Main, Germany<br>e-mail: nebel@sads.informatik.uni-frankfurt.de


#### Abstract

The stack-size of a tree $T$ is the number of cells of a stack needed to traverse $T$ in postorder. In this paper we show that the average number of proper subtrees having the same stack-size as the whole tree is asymptotically 1 with a variance of $2+o(1)$. The total number of subtrees with a stack-size one less than that of the whole tree is identical to 2 . Counting only maximal subtrees changes this number to $1+o(1)$ with a variance of $o(1)$.


Keywords: analysis of algorithms, combinatorial problems.

## 1. Introduction and fundamental definitions

Let $T=(I, L, r)$ be an (extended) binary tree [9, p. 399] with the set of internal nodes $I$, the set of leaves $L$, and the root $r$. We call $|T|:=|I|$ the size of $T$. Choosing a node $v \in I \cup L$ we denote by $T_{v}$ the subtree of $T$ with the root $v$. For $v \in I$ we denote by $v_{l}$ (resp. $v_{r}$ ) the left (resp. right) son of $v$. Let $r, v_{1}, v_{2}, \ldots, v_{i}$ be the path from the root to node $v_{i}$ and let $p$ be some predicate defined on $I \cup L$. If $p\left(v_{i}\right)=$ true $\wedge \forall j \in\left[1: i\left[: p\left(v_{j}\right)=\right.\right.$ false we call $T_{v_{i}}$ maximal $\mathrm{w} . \mathrm{r}$.t. the predicate $p$.

Each expression consisting of brackets, binary operators and operands may be represented by a binary tree (syntax tree) where the operands are the labels of the leaves and the internal nodes represent the operators. For example, the expressions $E_{1}:=x_{1} /\left(\left(x_{2}-x_{3}\right) \uparrow\left(\left(x_{4}+x_{5}\right) * x_{6}\right)\right)$ and $E_{2}:=x_{1} /\left(\left(x_{2}-x_{3}\right) \uparrow x_{4}+x_{5} * x_{6}\right)$ correspond with the trees $T_{1}$ and $T_{2}$ of Figure 1, respectively.

A well known strategy to evaluate the corresponding expression from its syntax tree is the postorder traversal of the tree using a stack [6, pp. 130 ff .]. The stack-function $S: I \cup L \rightarrow \mathbb{N}$ of a binary tree $T=(I, L, r)$ is defined by

$$
S(v):= \begin{cases}1 & \text { if } v \in L \\ \max \left(S\left(v_{l}\right), S\left(v_{r}\right)+1\right) & \text { if } v \in I\end{cases}
$$

$S(v)$ is the maximum number of nodes stored in the stack during the postorder traversal of the subtree $T_{v}[2,6]$. For a detailed description of the relation between the

