A NOTE ON HAMILTONIAN CYCLES IN LEXICOGRAPHICAL PRODUCTS

Matthias Kriesell ${ }^{1}$
Fachbereich Mathematik, Technische Universität Berlin Sekretariat MA 8-1, Straße des 17. Juni 136, D-10623 Berlin, Germany
e-mail: kriesell@math.tu-berlin.de

Abstract

A typical sufficient condition for the existence of a hamiltonian cycle in a lexicographical product $G[H]$ of two graphs G and H forces G to contain a hamiltonian cycle or G to contain a hamiltonian path and H to have some additional properties. We present some sufficient conditions in terms of toughness and factors which are much weaker in many cases. A typical statement is that $G[H]$ is hamiltonian if G is 2-edge connected and cubic and $|H| \geq 2$.

Keywords: hamiltonian path, lexicographical product, vertex transitive graph, toughness, multiple of a multigraph.

The lexicographical product $G[H]$ of two graphs G and H is defined by $V(G[H]):=$ $V(G) \times V(H)$ and $E(G[H]):=\left\{\left[(g, h),\left(g^{\prime}, h^{\prime}\right)\right]:\left[g, g^{\prime}\right] \in E(G)\right.$ or $g=g^{\prime} \wedge\left[h, h^{\prime}\right] \in$ $E(H)\}$. Traceablity properties of lexicographical products have been studied in [4] and are in the scope of our interest in the light of two old well-known conjectures.

The first one is due to Chvátal and known as t-tough-conjecture. A graph is called t-tough, if each separating vertex set S of G satisfies $|S| \geq t \cdot \omega(G-S)$, where $\omega(G-S)$ denotes the number of components of the graph $G-S$. ChVÁtal conjectured that there exists a t such that any t-tough graph is hamiltonian. Examples show that $t=2$ would be sharp [2].

The following is simply a restriction of the 2 -tough conjecture to nontrivial lexicographical products.

Conjecture 1 If $G[H]$ is 2-tough and $|H| \geq 2$ then $G[H]$ is hamiltonian.
Though it is not true that $G[H]$ is 2 -tough if G is 1-tough and $|H| \geq 2$, it could be possible that under the latter conditions $G[H]$ is hamiltonian.

The second conjecture is due to Lovász and states that any connected vertex transitive graph contains a hamiltonian path. This has been verified for certain vertex numbers as $p^{k}, 2 p, 3 p, 4 p, 5 p$ and $2 p^{2}, p$ a prime number (for a survey see [1]). By now,

[^0]
[^0]: ${ }^{1}$ The graduate school "Algorithmische Diskrete Mathematik" is supported by the Deutsche Forschungsgemeinschaft, grant GRK 219/2-96.

