MEMBERSHIP FOR k-LIMITED ETOL LANGUAGES IS NOT DECIDABLE

Henning Fernau ${ }^{1}$
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
Sand 13, D-72076 Tübingen, Germany
e-mail: fernauهinformatik.uni-tuebingen.de

Abstract

By the techniques developped in [1], we show how so-called k lETOL machines can simulate register machines, hence proving that there are nonrecursive languages generable by k lETOL systems (for each fixed $k \in \mathbb{N}$).

Keywords: formal languages, parallel and regulated rewriting

1. Definition and Results

We proved [1] that there are nonrecursive languages generable by 1lEDT0L systems. In this note, we show that this result is also true in the more general case of k IEDT0L systems (as introduced by WätJen [3]). In order to keep this note short, we refer the reader to our paper [1] as regards notations and definitions.

First, we generalize the notion of 11ET0L machine introduced in [1].
Definition 1 Let $k \geq 1$. A k lETOL machine is given by $M=\left(V, V^{\prime},\left\{P_{1}, \ldots, P_{t}\right\}\right.$, $\{\sigma, x, y, R\})$, where $V, V^{\prime}=\{\sigma, y\},\left\{P_{1}, \ldots, P_{t}\right\}$ are the total alphabet, the terminal alphabet and the set of tables, respectively. σ, x, y, R are special symbols in V. We say that M computes the function $f: \mathbb{N}_{0} \longrightarrow \rightarrow \mathbb{N}_{0}$ iff the corresponding klETOL system $G_{M, n}=\left(V, V^{\prime},\left\{P_{1}, \ldots, P_{t}\right\}, x^{k n} R \sigma, k\right)$ with axiom $x^{k n} R \sigma$ generates a word of the form $y^{k m} \sigma$ if and only if $m=f(n)$. Especially, there is at most one word in $\{y\}^{*}\{\sigma\} \cap L\left(G_{M, n}\right)$.

Theorem 2 For any computable function $f: \mathbb{N}_{0} \longrightarrow \mathbb{N}_{0}$ and any $k \geq 1$, there exists a klETOL machine computing f.

Proof. $f: \mathbb{N}_{0} \longrightarrow \mathbb{N}_{0}$ can be described by an r-RMP (register machine program using r registers) P. We describe a simulating k lET0L machine $M=\left(V, V^{\prime}, H,\{\sigma, x, y, R\}\right)$ with

$$
V=\left\{\sigma, F, R, S, A_{1}, \ldots, A_{r}, y, C_{1}, \ldots, C_{r}\right\} \cup L \cup L^{\prime}
$$

[^0]
[^0]: ${ }^{1}$ Supported by Deutsche Forschungsgemeinschaft grant DFG La 618/3-1.

