Journal of Automata, Languages and Combinatorics 1 (1996) 1, 13–26 © Otto-von-Guericke-Universität Magdeburg

OMEGA-SYNTACTIC CONGRUENCES¹

LILA KARI and GABRIEL THIERRIN Department of Mathematics, University of Western Ontario

London, Ontario, N6A 5B7, Canada e-mail: {lkari,thierrin}@julian.uwo.ca

ABSTRACT

An ω -language over a finite alphabet X is a set of infinite sequences of letters of X. Previously studied syntactic equivalence relations defined by ω -languages have mainly been relations on X^{*}. In this paper the emphasis is put on relations in X^{ω} , by associating to an ω -language L a congruence on X^{ω} , called the ω -syntactic congruence of L. Properties of this congruence and notions induced by it, such as ω -residue, ω -density, and separativeness are defined and investigated. Finally, a congruence on X^* related to the ω -syntactic congruence and quasi-orders on X^{ω} induced by an ω -language are studied.

Keywords: ω -syntactic congruence, ω -language, dense language, disjunctive language, residue, syntactic monoid.

1. Introduction

Various types of congruences on X^* have been introduced in connection with ω -words and ω -languages. The usual equivalence relations induced by an ω -language L on X^* are R_L and P_L , defined by (see, for example, [6]):

$$w \equiv v(R_L) \Leftrightarrow (\forall y \in X^{\omega}, wy \in L \text{ iff } vy \in L)$$
$$w \equiv v(P_L) \Leftrightarrow (\forall x \in X^*, y \in X^{\omega}, xwy \in L \text{ iff } xvy \in L).$$

Both R_L and P_L are equivalence relations on X^* which coincide with the Nerode and syntactic equivalence if L is a language over X^* . One easily proves that R_L is a right congruence and that P_L is a congruence. The monoid $\text{Syn}(L) = X^*/P_L$ is called the *syntactic monoid* of L.

An ω -language L is said to be disjunctive or right disjunctive if the corresponding relation P_L or R_L is the equality. It is dense if for every $u \in X^*$ there exist $x \in X^*$, $y \in X^{\omega}$ such that $xuy \in L$. Obviously, if an ω -language is disjunctive, it is dense. If the index of P_L is finite, then L is said to be μ -regular. (μ -regular ω -languages are sometimes referred to as finite-state ω -languages; see, for example, [7]) Remark that the index of P_L is finite if and only if the index of R_L is finite.

 $^{^1\}mathrm{This}$ research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada